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Abstract

Very deep networks are known to suffer from a number of pathologies which limit
their expressive power. We consider parameter distributions that shrink as the
number of layers increases in order to recover stochastic processes in the limit of
infinite total depth and show that the resulting diffusion processes exhibit desirable
properties.

1 Introduction

The focus of this work is on the function-space distribution properties of the output (the last layer)
of very deep neural networks. We also focus on standard classes of neural networks, as opposed to
proposing structural modifications in order to achieve the desired results. When neural networks are
also very wide, recent research [11, 12, 3] shows that i.i.d. initializations with constant variance can
result in undesirable properties, even when optimally initialized on the edge of chaos (EOC [3]), such
as: i) independence of the output from the input; ii) concentration of the output on restrictive families
including constant functions. We illustrate this problem in Fig. 1 where we plot output samples (for a
given pre-activation) over input values. In the tanh case the input has no discernible impact on the
output and the sampled functions are almost constant. This behavior holds for most smooth activation
functions [3]. In the ReLU case the input affects the variance of the output and the function samples
are piecewise linear. In both cases, the outputs corresponding to any two inputs end up perfectly
correlated.

Intuitively, the issue is the constant level of randomness introduced between subsequent layers. In this
work we consider initializations where the parameters’ distribution shrinks as the number of layers
increases and establish the convergence of the output of residual networks (jointly over multiple
inputs) to diffusion processes as the number of layers goes to infinity. In this limit, the output satisfies
the desiderata: i) it retains dependency from the input; ii) it doesn’t suffer from the perfect correlation
constraint; iii) it doesn’t collapse to a deterministic function nor does it diverge.

2 Neural SDEs Limits

2.1 Diffusion Processes and SDEs

There are many ways to construct continuous-time stochastic processes as limiting dynamics of
discrete-time processes, and in this work we consider the simplest case where the limiting process
has continuous paths. In all the neural network architectures considered in this work each layer
depends exclusively on the previous one. These two conditions identify diffusion processes [13],
which are continuous-time Markov processes with continuous paths, as natural candidates for the
limiting process. Diffusion processes arise as solutions to SDEs, stochastic versions of ODEs. A
SDE is described by:

dxt = µx(xt)dt+ σx(xt)dwt (1)
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Figure 1: Output samples in blue for 2 fully connected feedforward network with 500 layers of 500
units, input x0 ∈ [−2, 2], parameters on EOC; 5%, 50% and 95% quantiles in orange.

where wt is a driving Brownian motion (BM) [6] of compatible dimensionality. It is easy to give an
intuitive characterization of its dynamics. Consider the discretization of (1):

xt+1 = xt + µx(xt)∆t+ σx(xt)εt
√

∆t, (2)

where εt is a N (0, I) random vector. The discretization (2) converges (see [7]) to the solution of (1),
and we notice the similarity with the Euler discretization of an ODE in the deterministic part of (2).

2.2 Compatible Architectures, Parameter Distributions and Activation Functions

To obtain diffusion limits we show that it is necessary to consider a specific form of residual
architectures. Denote with xl ∈ Rdc , l = 1, . . . , dl, the layers of a neural network of dl layers, and
with x0 its input. Let ∆t = 1/dl define an infinitesimal unit of time and let ∆xl = xl+1 − xl define
the increments of xl. Due to the continuity of the paths of the limiting diffusion process, we need
Pr(‖∆xl‖ > ε|xl) ↓ 0 as ∆t ↓ 0 for any ε > 0, i.e. we require the increments to vanish eventually.
It’s easy to see that this cannot be achieved in a feed-forward network where xl+1 = φ(Wlxl + bl),
unless φ is linear or the distribution of (Wl, bl) depends on x. The same holds for residual network
architecture (ResNet) originally introduced in [4]. This leaves us with the identity ResNet [5] where:

xl+1 = xl + Fl(xl)

In general, each residual block Fl can be composed of multiple stacked layers. Here we consider the
case the simplest implementation with shallow residual blocks:

∆xl = Fl(xl) = φ(Wlxl + bl)

For shallow residual blocks, the vanishing increments requirement is satisfied by having the distribu-
tions of Wl and bl both concentrate around 0 provided that φ(0) = 0. We require:
Assumption 2.1 (Parameters Distribution and Scaling). For l = 0, 1, . . . let:

Wl
i.i.d.∼ N (0, σ2

w∆t)

bl
i.i.d.∼ N (0, σ2

b∆t)

Assumption 2.2 (Activation Function Regularity). The function φ : R→ R satisfies: φ(0) = 0, φ is
continuously differentiable three times on R, its second and third derivatives have at most exponential
tails growth, i.e. for some k > 0:

lim
|x|↑∞

|φ′′(x)|
ek|x|

+ lim
|x|↑∞

|φ′′′(x)|
ek|x|

<∞

2.3 Joint Diffusion Limits

We now state the main result, which establishes the convergence in distribution of the ResNet to a
diffusion process jointly over 2 inputs as dl ↑ ∞. We index with t instead of l as we need to introduce
a continuous-time interpolation (the limiting-process is a continuous-time one). We consider weak
solutions and weak uniqueness as we are interested only in the distributional properties of the limiting
SDE. The proof and more details these points are in the Appendix. We use xt and x′t to denote the
joint evolution of the resent for two inputs x0 and x′0.

2



10

5

0

5

d c
=

15
x T

,1
(x

0)

dl = 15 dl = 50 dl = 150 dl = 500

2 1 0 1 2
x0

10

5

0

5

d c
=

50
0

x T
,1

(x
0)

2 1 0 1 2
x0

2 1 0 1 2
x0

2 1 0 1 2
x0

Figure 2: Output samples in blue for a fully connected identity ResNet, different levels of dl and
dc, input x0 ∈ [−2, 2] (i.e. x0,c has the same value x0 for each c ∈ dc), parameters according to
Assumption 2.1 with σb = 1, σw = 1/

√
dc, tanh activation, 5%, 50% and 95% quantiles in orange;

the scaling on σw has a stabilizing effect and has been used to obtain well-defined limits in [8, 11, 12];
we observe a dependency on the input and flexible function shapes (not piecewise linear) compared
to Fig. 1 for the tanh activation; moreover we observe similar distribution properties across different

orders of magnitude for dl and dc which suggests the existence of a stochastic limit as dc ↑ ∞.

Theorem 2.1. The continuous time interpolation xt, x′t of xl, x′l converges to the weakly unique
weak solution of:

d

[
xt
x′t

]
=

[
µ(x)
µ(x′)

]
dt+

[
σ2(xt, xt) σ2(xt, x

′
t)

σ2(x′t, xt) σ2(x′t, x
′
t)

]1/2

dwt (t ∈ [0, T = 1]) (3)

µ(x) =
1

2
φ′′(0)(σ2

b + σ2
w‖x‖2)1dc

σ2(x, y) = φ′(0)2(σ2
b + σ2

w〈x, y〉) Idc
where wt is a 2dc-dimensional BM, 1dc is a dc-dimensional unit vector, Idc is a dc × dc identity
matrix. When φ′′(0) = 0 (for instance φ = tanh) the solution is guaranteed not to explode.

An immediate consequence of Theorem 2.1 is that the bivariate distribution of the output given two
inputs converges to the transition density of the solution of (3), a stochastic distribution. If φ′′(0) = 0,
the process is non-explosive (i.e. such transition density is always well-defined). As the integration
time is finite, the dependency on the input doesn’t vanish in the limit of infinite depth and can be
controlled via σw and σb. As the diffusion matrix squared is non-singular we also don’t suffer from
the perfect-correlation problem. This satisfies our desiderata i),ii),iii) in the introduction.

We empirically investigate the distribution properties of (3) in Fig. 2 where we plot sample outputs
(for a given component c ∈ dc) over input values. Fig. 2 can be contrasted with Fig. 1. In both figures,
each sample is generated by sampling all parameters once and computing the outputs corresponding
to each input in a range.

3 Related Work and Conclusions

[14] considers initializations for residual networks which are not encompassed yet by our analysis.
Conversely, the residual blocks in [14] cannot be shallow. Some parameters are initialized with
a similar scaling, but the residual blocks are multiplied by parameters initialized at 0, hence our
desiderata iii) is not satisfied.

The desire of obtaining flexible distributions in function space is especially relevant for Bayesian
inference. For instance, a prior model that puts all the probability mass on constant functions cannot
fit non-constant functions. While our results are a "pre-requisite" to construct infinitely deep models,
in order to obtain competitive performance more attention needs to be paid to architectural choices,
also at the level of input and output layers. Our results can be extended without requiring novel
theoretical developments to convolutional networks and non i.i.d. parameter distributions.
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A Diffusions and Diffusion Limits

We review results which are useful in establishing convergence to diffusion limits. Let xl, l = 0, 1, . . .
be a generic d-dimensional discrete-time Markov process. Let ∆t > 0 define an infinitesimal unit
of time and ∆xl = xl+1 − xl define the increments of xl. We will rely on the following condition
where it’s implicit that the distribution p(xl|xl−1) depends on ∆t.

Assumption A.1 (Infinitesimal Coefficients). Let xl, l = 0, 1, . . . be a d-dimensional discrete-time
Markov process, and assume that there exist µx(x) : Rd → Rd and σ2

x(x) : Rd → Rd×d such that:

lim
∆t↓0

E[∆xl|xl]
∆t

= µx(xl) (4)

lim
∆t↓0

V[∆xl|xl]
∆t

= σ2
x(xl) (5)

lim
∆t↓0

E[∆x2+δ
l |xl]

∆t
= 0 (6)

for some δ > 0, where all convergences are uniform on compacts of Rd for each vector and matrix
component. Moreover µx(x) and σ2

x(x) are continuous and σ2
x(x) admits a Cholesky factorization

σx(x), i.e. σx(x)σx(x)> = σ2
x(x).

The infinitesimal evolution of diffusion processes is characterized by its infinitesimal mean vector
(4) and infinitesimal covariance matrix (5), so the first two limits pinpoint the form of the limiting
stochastic evolution. Condition (6) is a technical one in the sense that it allows us to consider the
limits (4) and (5) instead of their truncated version [9].

Under additional assumptions, the following result establishes that in the limit xl can be embedded in
a diffusion process.

Theorem A.1. Let xl, l = 0, 1, . . . be a d-dimensional discrete-time Markov process, and define the
continuous-time process xt on t ∈ [0, T ] by continuous-on-right step-wise-constant interpolation of
xl:

xt = xl1l∆t≤t<(l+1)∆t (l = 0, . . . , dl, ∆t = T/dl) (7)

for some T > 0.

Consider the d-dimensional stochastic differential equation (SDE) with initial value x0, drift vector
µx(x) given by (4), and diffusion matrix σx(x) obtained taking the square root of (5):

dxt = µx(xt)dt+ σx(xt)dwt, (8)

where wt is a d-dimensional Brownian motion (BM) with independent components. Equation (8) is
short-hand notation for:

xT = x0 +

∫ T

0

µx(xt)dt+

∫ T

0

σx(xt)dwt,

where T is the integration interval, the first integral is a standard (Riemann) integral, and the second
integral is an Ito integral.

Assume that Assumption A.1 holds and that SDE (8) admits an weakly unique and non-explosive weak
solution. Then the stochastic process defined by (7) with initial value x0 converges in law to such
solution. Moreover, this result continues to hold when x0 is an independent and square integrable
random variable, in which case the driving BM is independent of x0. In both cases, the convergence
in law is on D([0,∞),Rd) the space of functions from [0,∞) that are continuous from the right with
finite left limits endowed with the Skorohod metric [1].

Proof of Theorem A.1. This is [9, Theorem 2.2]: Assumption A.1 and the postulated weakly unique
and non-explosive weak solution satisfy all the conditions required for the application of [9, Theorem
2.2]. Note that we use a stronger non-explosivity condition [10]. Alternatively, for this standard result
the reader can refer to the monograph [13] on which [9] is based; yet another reference is [2].
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The reader is referred to the monograph [10] for a gentle introduction to SDEs and Ito integration
theory. In Theorem A.1, the continuous-time interpolation xt of xl is introduced because we
are seeking a continuous-time limiting process from a discrete-time process. Observe that the
convergence established in Theorem A.1 is strong in the sense that it concerns with the convergence
of the distribution of the stochastic process xt as a stochastic object on the whole time interval [0, T ]
to the distribution of the diffusion limit. For instance, this convergence implies the joint convergence
of xt1 , . . . , xtn for any collection of times t1, . . . , tn, and not only the convergence of the terminal
value xT .

In Theorem A.1 we postulate the existence and weak uniqueness of a weak solution of the limiting
SDE, and its non-explosive behavior. We consider weak solutions and weak (i.e. in law) uniqueness,
instead of strong solutions and strong (pathwise) uniqueness, as we are interested exclusively in
distributional aspects of the limiting process [9, 10]. Several assumptions exist in the literature in
order to guarantee that the additional assumptions of Theorem A.1 are satisfied. The following
assumptions suffice for our goals:
Assumption A.2 (Weak Existence and Uniqueness on Compacts). The functions µx(x) and σx(x)
are twice continuously differentiable.
Assumption A.3 (Non-explosive Solution). There exist a finite C > 0 such that for each x ∈ Rd:

‖µx(x)‖+ ‖σx(x)‖ ≤ C(1 + ‖x‖)

When Assumption A.1 and Assumption A.2 hold (as it will be the case in all the ResNet models
considered) but Assumption A.3 doesn’t, we still obtain convergence to the unique solution of (8) but
xt might diverge to infinity with positive probability as dl ↑ ∞.

B Proof of Main Theorem

Lemma B.1. If φ satisfies Assumption 2.2, ε ∼ N (0, σ2) with σ2 ≤ σ2
∗, α > 0, then we can find

M2(α, σ2
∗) <∞ and M3(α, σ2

∗) <∞ such that:

E [|φ′′(ε)|α] ≤M2(α, σ2
∗)

E [|φ′′′(ε)|α] ≤M3(α, σ2
∗)

Proof. We prove the result only for φ′′(ε), the case for φ′′′(ε) being identical. Let L large enough
such that |φ′′(x)| ≤ K1e

K2|x| for |x| ≥ L then:

E [|φ′′(ε)|α] = E
[
|φ′′(ε)|α1|ε|≤L

]
+ E

[
|φ′′(ε)|α1|ε|>L

]
≤ sup
|x|≤L

|φ′′(x)|α +Kα
1 E[eK2α|ε|]

The first term is finite. The fact that the second term can be bounded by a finite and increasing
function in σ2 follows from the symmetry in law of ε and the form of its movement generating
function.

Proof of Theorem 2.1. Let d = 2dc and

x =

[
xl
x′l

]
∈ Rd

b =

[
bl
bl

]
∈ Rd

W =

[
Wl 0 Idc

0 Idc Wl

]
∈ Rd×d

h = Wx+ b ∈ Rd

µx(x) =

[
µ(xl)
µ(x′l)

]
σ2
x(x) =

[
σ2(xt, xt) σ2(xt, x

′
t)

σ2(x′t, xt) σ2(x′t, x
′
t)

]
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where we dropped the dependency on l for notational convenience and reserve subscripts to indexing.
A second order Taylor expansion of φ around 0 yields for i = 1, . . . , d:

∆xi
∆t

=
φ(hi
√

∆t)

∆t
= φ′(0)hi∆t

−1/2 +
1

2
φ′′(0)h2

i +
1

6
φ′′′(εi)h

3
i∆t

1/2

with εi ∈ (−hi
√

∆t, hi
√

∆t). To prove (4) we want to show that ∀R > 0:

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣E [φ′(0)hi∆t
−1/2 +

1

2
φ′′(0)h2

i +
1

6
φ′′′(ε)h3

i∆t
1/2

]
− µx(x)i

∣∣∣∣ = 0.

Now, hi = Wix+ bi and the distribution assumptions on W and b lead to

E
[
φ′(0)hi∆t

−1/2 +
1

2
φ′′(0)h2

i

]
=

1

2
φ′′(0)V[Wx+ b]i,i = µx(x)i

It remains to show that
lim
∆t↓0

sup
‖x‖<R

∣∣E [φ′′′(εi)h3
i

]∣∣∆t1/2 = 0,

for which it suffices to show that sup‖x‖<R
∣∣E [φ′′′(εi)h3

i

]∣∣ can be bounded by M(R) < ∞ uni-
formly in ∆t. By Cauchy–Schwarz:

sup
‖x‖<R

∣∣E [φ′′′(εi)h3
i

]∣∣ ≤ sup
‖x‖<R

E
[
φ′′′(εi)

2
]1/2

sup
‖x‖<R

E
[
h6
i

]1/2
. (9)

The constraint sup‖x‖<R corresponds to a constraint on the variance of hi hence the second sup is
finite. By Lemma B.1 the first sup is finite too and not increasing in ∆t as |εi| ≤

√
∆t|hi| which

allows us to produce the desired bound M(R).

Regarding (6), following a first order Taylor expansion of φ around 0 we need to show that for
i = 1, . . . , d and R > 0:

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣E
[(
φ′(0)hi∆t

1/2 + 1
2φ
′′(εi)h

2
i∆t

)4
∆t

]∣∣∣∣∣ = 0

with εi ∈ (−hi
√

∆t, hi
√

∆t). Note that The term inside the expectation is composed of a sum of
terms of the form khni φ

′′(εi)
m∆tα for integers n,m ≥ 0 and reals α > 0, k ∈ R. This results from

repeated applications of the Cauchy–Schwarz inequality and Lemma B.1 as we did previously to
prove (4).

Regarding (5), we can compute E[∆x(∆x)′]/∆t instead of V[∆x]/∆t as in the infinitesimal limit
of ∆t ↓ 0 the two quantities have to agree due to the convergence of the infinitesimal mean that we
have already established. Hence following two first order Taylor expansions of φ around 0 we need
to show that for i, j = 1, . . . , d and R > 0:

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣E
[(
φ′(0)hi∆t

1/2 + 1
2φ
′′(εi)h

2
i∆t

)(
φ′(0)hj∆t

1/2 + 1
2φ
′′(εj)h

2
j∆t

)
∆t

]

− σ2
x(x)i,j

∣∣∣∣∣ = 0

with εi ∈ (−hi
√

∆t, hi
√

∆t), εj ∈ (−hj
√

∆t, hj
√

∆t). The only term inside the expectation not
vanishing in ∆t is

E[φ′(0)2hihj ] = φ′(0)2 V[Wx+ b]i,j = σ2
x(x)i,j

The (uniform on compacts) convergence of all terms aside from σx(x)2
i,j to 0 once again follows

from repeated applications of the Cauchy–Schwarz inequality and Lemma B.1.

Finally, the continuity of µx(x) and σx(x) are a consequence of the continuity of the conditional
covariance V[Wx+ b], and as V[Wx+ b] is positive semi-definite so is σ2

x(x) which satisfies the
existence of its square root matrix requirement. Again from the properties of V Assumption A.2
follows, and it can be easily verified that when φ′′(0) = 0, i.e. there is no drift, Assumption A.3 is
satisfied too. This completes the proof.
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