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Abstract

Recent algorithms with state-of-the-art few-shot classification results start their
procedure by computing data features output by a large pretrained model. In this
paper we systematically investigate which models provide the best representations
for a few-shot image classification task when pretrained on the Imagenet dataset.
We test their representations when used as the starting point for different few-
shot classification algorithms. We observe that models trained on a supervised
classification task have higher performance than models trained in an unsupervised
manner even when transferred to out-of-distribution datasets. Models trained with
adversarial robustness transfer better, while having slightly lower accuracy than
supervised models.

1 Introduction

Deep learning systems achieve remarkable performance for several classification problems when
given large enough datasets [[15} 33]]. In the case of small amounts of training data, these models can
easily overfit as they contain a very large number of parameters [3]. There are two main techniques
to address these issues: if we have a medium-sized dataset, we can fine-tune the weights of a model
trained on a larger dataset [12]; for very small datasets we rely on methods which learn from the
"training’ dataset without multiple steps of gradient descent over all parameters in the model, known
as meta-learning or few-shot classification [26].

Just as in the fine-tuning regime, in the few-shot classification case we also want to leverage large
datasets for better final performance. This is almost always achieved by feeding the data representation
produced by a deep neural network as input to the algorithm. For example, in the case of image
classification practitioners will use a deep residual convolutional network pre-trained on a larger
dataset to compute the features [31}[32]].

Intuitively, if the representations produced by the pre-trained model are more discriminative of the
different classes under consideration at test time, it will be easier for a few-shot classification method
to produce better results [31]]. Previous work has shown that deeper convolutional models have higher
accuracy and their feature quality appears to be the limiting factor in performance of most few-shot
classification algorithms [4]].

In this paper we will perform a systematic exploration of whether deep convolutional networks
pretrained on the ImageNet dataset without few-shot classification in mind can transfer well to this
task. Previous work has done a similar exploration for the case of fine-tuning [[12]], but systematic
reviews of few-shot classification methods have not looked at the transfer properties of pretrained
models, instead focusing on the adaptation algorithm or architectural choices [4] 35]].

After evaluating multiple models for 14 different datasets, we have come to the following conclusions:
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e Models pre-trained on a supervised classification task on the ImageNet dataset transfer well
to other natural image datasets, but poorly to other types of image (e.g. MNIST, SVHN).
The more data models are trained on, the better their transfer performance.

e Models trained with adversarial robustness [38l [11] suffer a smaller performance decrease
when transferred to out-of-distribution datasets. Their absolute performance is slightly lower
than non-robust models.

e Models trained with an unsupervised learning loss [[10, 2] do not reach the performance of
models trained in a supervised manner, and do not seem to transfer better.

o Unlike what was reported in [32] for simpler architectures trained from scratch, similarity-
based few-shot classification methods used with pretrained models perform best when the
similarity function is based on cosine similarity.

2 Related work

The earliest research in the field of few-shot classification focused on embedding space similarity
based methods such as Matching [36]] and Prototype networks [32]. These models are trained on
permutations of the meta-training dataset for a number of epochs, and then tested on unseen classes
from the same distribution. Similarity based methods can be augmented with a decoder on top of the
retrieved features to provide more flexibility in cases where the required output isn’t a direct class
mapping [8} 25].

MAML is a gradient-descent based method for metalearning [[7], where the network is trained such
that its weights converge to a configuration from which the model can be finetuned in very few steps
of gradient descent on the support set. Recent work has demonstrated state of the art results for
gradient-based methods [31]. In addition, MAML and related models have been shown to work
particularly well for reinforcement learning scenarios [21]].

A third way of doing meta learning is to train a recurrent neural network to iterate over the whole
support set and the new query point [28| 20]. These methods require fewer assumptions on the
structure of the activation space, but are more computationally intensive.

Most literature on metalearning tends to use the same distribution for the meta training set and the
testing set, only holding out specific images or specific classes from training. This is a weaker form
of generalization than cross-distribution generalization, which has recently been tested in [35]], and
is the setting in which we are interested. The authors of this paper show that the performance of
all metalearning methods degrades significantly when tested on a distribution significantly different
to the one of the meta training set; and that a model which has been meta-trained on a number of
different datasets generalizes better.

The authors of [12] study transfer learning in the setting of models pretrained on imagenet. They
show that models with better final accuracy on imagenet classification tend to have better transfer
learning performance, which is encouraging for their application in few-shot classification.

The authors of Meta-Dataset explore the performance of few-shot classification methods when
transferred across datasets [35)]. The authors survey a large number of state-of-the-art adaptation
methods across a large variety of datasets with a convolutional backbone trained from scratch. They
conclude that a model trained on a large variety of datasets has better transfer performance than a
model trained exclusively on ImageNet. Their comparison across multiple adaptation methods leads
us to conclude that quality of the features produced by a backbone affects performance much more
strongly than the particular adaptation method. Unlike our work, they do not consider pretrained
models and instead train a comparatively shallow backbone (ResNet-18) from scratch.

In [4] we find another survey of few-shot classification methods. Here the authors measure the effect
of convolutional backbone depth as well as classification algorithm on final performance. In this
study only two datasets are considered, CUB and mini-ImageNet. As before, the authors find that
deeper backbones provide better performance, but again restrict their analysis to shallow models
trained from scratch.

Given the thorough analyses in the two papers mentioned above, we are encouraged to study the use
of very deep convolutional networks trained on large datasets as feature extractors, as that appears to
be the main bottleneck in current few-shot classification methods.



Model Training method Dataset #params Short name

ResNet-50 [9]] Supervised ILSVRC2012 24M resnet50

EfficientNet-BO [34] Supervised ILSVRC2012 5.3M efficientBO

EfficientNet-B7 [34]] Supervised ILSVRC2012 66M efficientB7

WSL Supervised ILSVRC2012 + Insta- 88M wsl

(resnext101_32x8d_wsl) gram (950M images)

(18]

Robust-50 [6] Supervised + Adv. Ro- ILSVRC2012 24M robust50
bustness

Denoising Resnet [38]] Supervised + Adv. Ro- ILSVRC2012 70M denoise
bustness

Local DIM [2]] Unsupervised ILSVRC2012 431M amdim

Table 1: Pretrained deep convolutional networks used as feature extractors considered in our analysis.

3 Few-shot classification methods

The few-shot classification problem consists of a set of datasets D = {dy, ds, ...} where d,, is an
individual dataset with image and target label pairs d,, = {(zo, ¥0), (1, %1), ...}. We consider each
dataset d split into two parts: a support set s = {(z,,ys)} and a query set ¢ = {(z4, y4)}. The model
can access both data and labels for all examples in s and is asked to predict labels for z, € q. The
model is trained to minimize the cross-entropy loss:

L=Es.p |— Z quOg(fG,s(xq)) ) (1

(zq,yq)€q

where fg ¢(x) stands for a parametric model which outputs the vector of inferred class probabilities.
Following established nomenclature, we define k-shot, N-way classification learning as the case
where the support set s contains N classes, and for each class we have k observations.

Following [31,[29], we decompose the meta-classification model into two modules: the representation
network ¢, and the adaptation method a such that fp (z) = ag(¢(x4), {@(zs), ys }). In the following
subsections we detail the choices made for ¢ and a in this study.

3.1 Pretrained models

To extract representations from an image we use different convolutional network backbones, all
based on the residual network architecture introduced in [9]. These models consist of a stack of
convolutional layers followed by a single linear layer applied to a final, flattened activation vector.
For all our experiments we take this pre-logits activation vector (which we denote as ¢(z)) as the
representation to be fed to the adaptation method.

We consider a number of recent architectures trained on the Imagenet ILSVRC2012 dataset [30]]. For
models trained on the standard supervised classification task we consider the baseline ResNet-50 [9]],
as well as the highest and lowest parameter count variants of EfficientNets [34]. Additionally we
consider the WSL model [18]], which is pretrained on an image dataset with billions of images with
low quality labels before full finetuning on Imagenet. We also analyse two ResNet architectures
trained with adversarial robustness [38l, 6] to investigate whether such representations generalize
better. Finally we test the Local DIM model [2], trained in a fully unsupervised manner on ImageNet.

3.2 Adaptation methods

We focus our analysis on three simple popular adaptation methods: Matching networks [36]], Prototype
networks [32], and Logistic regression via SGD.



In prototype networks the mean vector of the activations corresponding to all support examples of
that class is used as a "prototype’ for that class. Class conditional probabilities are calculated as a the
softmax over the similarity of a test point’s activation to all ’prototypes’. Concretely, a prototype is
defined as the mean vector:

where X, is the set of support set inputs with label corresponding to class c¢. This is equivalent
to assuming the activations for class ¢ follow a Gaussian distribution with mean p. and identity
covariance matrix.

Assuming the labels y. of inputs belonging to class ¢ are represented by a one hot vector, the
unnormalized logits ¢ for a query input z, are given by a similarity measure between a;(x,) and the
centroids of each class:

N

¢ (‘Eq) = ZS((ZS(ZEq), IU'C) Ye

c=1

where the similarity S(-,-) can be for instance the cosine similarity, the inner product, or the negative
of a distance function such as the Euclidean distance.

In matching networks [36] the activations for all examples in the support set are kept in memory. For
a test point we query the K-nearest neighbors in activation to compute a kernel density estimate of
the class conditional probabilities. The unnormalized logits are given by:

Clag) = D, S(d(xy), ¢(x)) v,

(z:y) ENK (24)

where N (z4) is the set of input and label pairs corresponding to the K nearest neighbors of .

One goal of our analysis is to evaluate whether the topology of the representation space impacts few-
shot classification: if the representations are clustered in multiple disjoint volumes in representation
space then matching networks should perform better than prototype networks, as the prototypes can
only represent one single connected region of space.

We also examine the performance of simple logistic regression on the support set’s representations.
For a large number of shots, we expect this method to provide an upper bound on performance as
has more flexibility than similarity-based methods. For low number of shots, this method has an
infinite number of solutions and therefore SGD defines an implicit form of generalization. For the
experiments we use logistic regression implementation in scikit-learn [24] with all regularization
terms set to zero.

4 Experiments

We evaluate the performance of all methods on 14 natural image datasets: ILSVRC2012 Imagenet
validation set [30]; MNIST [17]; Omniglot [[16]; VGG flowers [23]]; FGVC-Aircraft [[19]]; Cars [13];
SVHN [22]]; CIFAR-10 and CIFAR-100 [[14]; DTD [5]]; Fungi [1]]; Caltech Birds [37]; ImageNet-
v2 [27]; and a subset of Imagenet classes not contained in the ILSVRC2012 1000-class set (we
provide a full list of synsets in the Appendix).

For each dataset, we generate a new episode by sampling N classes (N € {5, 10, 20,50, 100}), and
create a k-shot support set (k € {1,2,3, 5,10, 20}) using the features generated by the network under
study. Unless otherwise noted, we always use the last layer’s features. The accuracy of an episode is
calculated over a batch of new query datapoints (batch size 32).
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Figure 1: Accuracy comparison for different datasets as a function of number of shots (elements in
the support set) for 10-way classification. The accuracy value reported is the average accuracy over 25
unique episodes (where each episode is a random sample of 10 classes, from which the examples are
then randomly split into a support set with k& examples and a query set with max (z. — k, 32) examples,
with z, the total number of examples available in class c¢). Top row: we show imagenet and cifar
datasets, where the best performance is obtained by networks trained on the supervised classification
task. Middle row: more specialized natural image datasets where the performance decreases but
supervised architectures still do better. Note that better architectures and the ws1 network trained
on more data perform better. Bottom row: out-of-distribution datasets. Here networks trained with
adversarial robustness do better.
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Figure 2: Accuracy comparison for different datasets as a function of number of classes (elements in
the support set) for 5-shot classification. The accuracy value reported is the average accuracy over
25 unique episodes (as described in the figure above). We show only results for datasets where 100
classes were available.

4.1 Pretrained features comparison

Firstly we seek to quantify how the features calculated by the various pretrained backbones under
consideration affect the final performance of the few-shot classification task across a range of number
of shots and number of classes under consideration. Are certain backbones universally better than
others? Do unsupervised models and models trained with adversarial robustness generalize better?

In Figure [[| we compare the 10-way classification performance across all architectures under consid-
eration for different datasets as a function of number of shots (elements in the support set). To focus
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Figure 3: Accuracy comparison for different datasets as a function of adaptation method and similarity
function for 10-way classification. The abbreviations MN, PT and SGD are respectively used for
Matching Networks, Prototype Networks, and Logistic Regression with Stochastic Gradient Descent.
Light grey values represent missing data (when the dataset does not contain enough examples per
class for that number of shots). The accuracy value reported is the average accuracy over 25 unique
episodes (as described in FigE[).

on the feature quality, we report the maximum accuracy achieved over all adaptation methods for that
particular architecture and number of shots. In the next section we will break the results down by
adaptation method.

Firstly, we observe that supervised classification architectures all do very well on the three datasets
derived from imagenet, as would be expected since there is little distributional shift. As expected from
the results in [27], there is a small drop in performance for ImageNet-v2, and a larger performance
drop for the ImageNet dataset with unseen classes. Performance on the cifar datasets is also high, in
spite of a very different image resolution (we upscale all images where the resolution does not match
the original model’s input resolution).

The same architectures also perform well in various natural image based datasets such as birds, cars,
flowers. For these datasets we empirically observe that architectures with better final performance on
the classification task perform better. In particular the ws1 network, pre-trained on much more data,
stands out.

Out-of-distribution datasets such as omniglot, dtd, mnist and svhn present a different picture. Not
only does the performance degrade, networks trained with adversarial robustness do better than their
non-robust counterparts. The architecture trained in a fully unsupervised manner does not generalize
better, in spite of its features not having been tuned in a class-specific manner by a supervised loss.

In Figure 2] we plot the same quantity as above, but now as a function of the number of classes for
a fixed number of shots (5 shot per class). We can confirm with this plot that the relative ranking
between models stays roughly constant as they degrade in performance with increasing number of
classes. In fact, performance for a low number of classes seems to be predictive of final performance
for high number of classes across architectures and datasets, with higher drops for lower initial
accuracy numbers.



4.2 Adaptation method comparison

Next we quantify the effect of the adaptation method on the final performance of few-shot classifi-
cation when used with pre-trained models. Since pretrained models were not trained with few-shot
classification in mind, conclusions reached by previous studies [4} 35 132]] may not hold true.

Specifically we are interested in the following questions: if a model is trained in a supervised manner
with a final softmax layer, the representations have no reason to cluster together in the sense of
the euclidean distance, as what matters to produce discriminative logits is the dot product of the
representation vector with a given entry in the weights matrix of the last linear layer. Therefore, the
averaging done by prototype networks could be detrimental, and the use of Lo distance might not be
optimal in terms of determining proximity in this space.

In Figure 3] we compare the accuracy different datasets as a function of adaptation method and simi-
larity function for 10-way classification. The accuracy is reported as an average over all architectures
under consideration. From these heatmaps we can observe that contrary to our expectation Prototype
Networks seems to consistently beat Matching Networks. On the other hand we do find that cosine
similarity is consistently superior to Ly distance as we expected. This is different to the results
originally reported in Prototype Networks, where Lo worked better for a convolutional backbone
pretrained from scratch.

Furthermore we observe that the unnormalized dot product tend to perform worse than the other
similarity measures. We hypothesise this is due to the fact that there are no learnable parameters in
these adaptation methods and therefore an unnormalized method suffers if there are scale differences
between the average features of different classes. We leave this investigation to futre work.

Finally we observe that Logistic regression with SGD is the best performer for 10 shots and above,
while being significantly worse than other adaptation methods for a small number of shots. This
agrees with the intuition of the early papers introducing few-shot classification [36], which propose
their methods only in the 5-shot and below regime.

This suggests that at least in the case of pretrained models there is a clear hierarchy of which methods
are best as a function of number of shots: for 1-5 shots, methods such as Prototype and Matching
networks will work best; for over 10 shots, retraining of the last layer will do better; and finally for
high number of examples per class fine-tuning becomes a viable option [12].

In Figure ] we break down the accuracy per pre-trained architecture. We find that there are no
significant differences to the analysis described above, with Prototype Networks with cosine similarity
generally performing best among similarity-based methods. Unnormalized dot product still exhibits
the worst performance, although with EfficientNets its performance drop is not so significant. Overall
the most robust architecture across all datasets appears to be efficientB7, while the individual
highest performer for the best hyperparameter choices is ws1.

5 Conclusions

In this paper we systematically investigate the performance of pretrained models as backbones to
calculate feature representations for few-shot image classification tasks. We tested their accuracy
when used as starting point for popular similarity-based few-shot classification methods across a
range of datasets.

Encouragingly we find that these models can provide very high accuracy for a number of few-shot
classification tasks. We found that models pre-trained on a supervised classification task on the
ImageNet dataset transfer well to other natural image datasets, but poorly to other types of image
(e.g. MNIST, SVHN). The more data models are trained on, the better their transfer performance.

Contrary to our expectation, models trained with adversarial robustness or trained with an unsu-
pervised loss do not seem to outperform models trained on the popular 1000-class ILSVRC2012
ImageNet classification task. However, the models tested here do not achieve the same performance
on the original ILSVRC2012 test set as the purely supervised models, so their performance should be
revisited when the field matures and performance improves.
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Figure 4: Accuracy comparison for different pretrained backbones as a function of adaptation method
and similarity function for 10-way classification. The abbreviations MN, PT and SGD are respectively
used for Matching Networks, Prototype Networks, and Logistic Regression with Stochastic Gradient
Descent. The accuracy value reported is the average accuracy over all datasets.

We also found that some best practices on few-shot classification do not transfer to the use of pre-
trained models (e.g. we find that the cosine similarity provides better performance than L, distance,
contrary to what is the case with end-to-end trained few-shot classification models).

We hope our empirical investigation will spur the use of pretrained models in applied few-shot
classification and online learning tasks, as they can provide excellent performance with very little
training costs. All convolutional backbones we experimented with have publicly available weights
and code implementations and we thank all the respective authors for releasing their code for
experimentation.
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